Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peng-Wu Zheng, ${ }^{\text {a } *}$ Wei Wang ${ }^{\text {b }}$ and Xue-Min Duan ${ }^{\text {a }}$

${ }^{\text {a }}$ School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China, and
${ }^{\mathbf{b}}$ Department of Chemical Engineering, Anshan University of Science and Technology, Anshan 114002, People's Republic of China

Correspondence e-mail: zhengpw@sohu.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.037$
$w R$ factor $=0.109$
Data-to-parameter ratio $=15.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Ethyl N-(2-pyridyl)carbamate

The title compound, $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$, is nearly planar. The crystal packing is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

Pyridine-containing compounds are used extensively as bridging ligands in coordination and metallosupramolecular chemistry (Steel, 1990, 2005). Moreover, pyridine derivatives are often used as intermediates in synthetic chemistry. The title compound, (I), is a precursor used in the preparation of tricyclic amide and urea compounds for the inhibition of Gprotein function and the treatment of proliferative diseases (Bishop et al., 1995). We report here the crystal structure of (I).

(I)

All the bond distances and angles are normal (Kennedy et al., 2004). The overall molecule is extended and nearly planar, with an r.m.s. derivation of $0.0383 \AA$. The terminal ethoxycarbonyl group is slightly twisted, by $5.1(5)^{\circ}$, away from the pyridine ring. Hydrogen-bond interactions between the amino H and pyridyl N atoms link the molecules into an infinite chain along the c axis.

Experimental

The title compound was synthesized according to the modified method of Katritzky (1956). Ethyl chloroformate ($10.85 \mathrm{~g}, 0.10 \mathrm{~mol}$) was added dropwise to a solution of 3-aminopyridine (9.42 g ,

Figure 1
A view of the molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Received 25 July 2005
Accepted 9 August 2005
Online 17 August 2005

Figure 2
The unit-cell packing, viewed down the c axis, with hydrogen bonds shown as dashed lines.
0.10 mol) in dry pyridine (30 ml) and stirred at $273-278 \mathrm{~K}$ for 6 h . After another 8 h at room temperature, the reaction mixture was hydrolysed with ice water (60 ml). The solid was filtered off and recrystallized from ethanol/water, giving $9.96 \mathrm{~g}(60 \%)$ of colourless solid (m.p. 363-364 K). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of the mother liquor.

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=166.18$
Monoclinic, $P 2_{1} / c$
$a=9.621$ (4) \AA
$b=7.497$ (3) \AA
$c=11.839$ (5) \AA
$\beta=93.211(6)^{\circ}{ }^{\circ}$
$V=852.6$ (6) \AA^{3}
$Z=4$

$$
\begin{aligned}
& D_{x}=1.295 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } \mathrm{K} \mathrm{\alpha} \text { radiation } \\
& \text { Cell parameters from } 1352 \\
& \text { reflections } \\
& \theta=3.2-24.8^{\circ} \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=294(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.30 \times 0.26 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min }=0.972, T_{\text {max }}=0.981$
4629 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.109$
$S=1.01$
1741 reflections
115 parameters
H atoms treated by a mixture of independen and constrained refinement

Table 1
Selected geometric parameters ($\AA{ }^{\circ},{ }^{\circ}$).

O1-C6	$1.2042(19)$	$\mathrm{N} 2-\mathrm{C} 6$	$1.351(2)$
$\mathrm{O} 2-\mathrm{C} 6$	$1.342(2)$	$\mathrm{N} 2-\mathrm{C} 1$	$1.394(2)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.442(2)$		
			$108.87(13)$
$\mathrm{O} 1-\mathrm{C} 6-\mathrm{N} 2$	$127.08(16)$	$\mathrm{O} 2-\mathrm{C} 6-\mathrm{N} 2$	
			$-174.15(15)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 5-\mathrm{N} 1$	$179.69(16)$	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 6-\mathrm{O} 2$	$179.11(17)$
$\mathrm{C} 7-\mathrm{O} 2-\mathrm{C} 6-\mathrm{N} 2$	$-178.59(15)$	$\mathrm{C} 6-\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 8$	

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.94(1)$	$1.98(1)$	$2.914(4)$	$178(1)$

Symmetry code: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$.

All H atoms were positioned geometrically and refined as riding, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 (pyridyl H), $0.96\left(\mathrm{CH}_{2}\right)$ and $0.97 \AA$ $\left(\mathrm{CH}_{3}\right)$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The amino H atom was refined freely $[\mathrm{N}-\mathrm{H}=0.936(9)]$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors gratefully acknowledge financial support from the Foundation for Excellent Young Teachers of Jiangxi Science and Technology Normal University.

References

Bishop, W. R., Doll, R. J., Mallams, A. K., Njoroge, F. G., Petrin, J. M., Piwinski, J. J., Remiszewski, S. W., Taveras, A. G. \& Wolin, R. L. (1995). Canada Patent Pffice, WO 9510516 (260 pp.).
Bruker (1997). SMART (Version 5.10), SAINT (Version 5.10) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Katritzky, A. R. (1956). J. Chem. Soc. pp. 2063-2064.
Kennedy, A. R., Khalaf, A. I., Suckling, C. J. \& Waighb, R. D. (2004). Acta Cryst. E60, o1510-o1512.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Steel, P. J. (1990). Coord. Chem. Rev. 106, 227-265.
Steel, P. J. (2005). Acc. Chem. Res. 38, 243-250.

